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1. INTRODUCTION 

This paper provides a precise method of 
constructing abridged life tables. Such 
construction involves two problems: The main 
one is the estimation of the survival rate, 

npx = 
Z(x +n) /Z(x), from deaths registered during 

a given base period and populations enumerated 
or estimated at mid -years in each age interval; 
the secondary problem is the estimation of the 
stationary population 

n 
L 
x 

. 

The estimation of the survival rate calls 
for the solution of certain equations which 
relate the observed age- specific death rate to 
the function underlying the age distribution in 
the stationary population on the one hand and 
the lifetime distribution in the stationary 
population on the other (Section 2). The 
solution of these equations could be regarded as 

an approximation of a dimensionless function by 
known dimensional functions. Keyfitz and 
Frauenthal (1975) solved such an equation and 
obtained an explicit functional relationship 
which approximated the survival rate in terms 
of age- specific death rates and mid -year popula- 
tions, and which they showed are considerably 
more accurate than those derived by using the 
age distribution of the stationary population 
(Greville 1943). The main purpose of this paper 
is to provide a different set of explicit 
formulas (Section 3) which will be shown to be 
more accurate than Keyfitz -Frauenthal's and 
capable of removing the two defects inherent in 
their method (Section 4). A complete cubic 
spline obtained from consideration of the life- 
time distribution is used to compute the L 

n x 

function and the result is shown to be more 
accurate than other existent methods (Section 5). 

Life tables so constructed are to be viewed as 
constructed at the midpoint of the base period. 
A detailed discussion of application of spline 
functions to life table construction, including 

the construction of complete life tables, is 
given in the more comprehensive paper, Hsieh 
(1977). 

2. FUNDAMENTAL CONCEPTS AND EQUATIONS 

We shall use a star superscript ( *) to 

distinguish functions in the observed population 
from their corresponding functions in the 
stationary population. Let Z *(x,t) be continuous 
having a continuous first order partial deriva- 
tive with respect to age x, and represent the 

profile of the observed population pyramid at 

calendar time t (the unit of Z *(x,t) is "persons 

per year ") so that Z *(x,t)dx is the number of 
individuals aged x to x +dx at time t and *(x,t) 

dxdt is the number of individual -time units 

observed on the region dxdt. Let *(x,t), which 

possesses similar regularity properties to 
*(x,t)be the force of mortality at age x and 
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* 
calendar time t (u (x,t) has unit "per year "). 

Then, 
n 

the death rate 
x (whose unit is "per 

year ") for the age interval [x,x +n) and the base 
period [t,t +h] (usually n =5 or 4 years, and h =3 
or 1 year.) can be expressed as 

fn * 
hMt (x+v,t+u) (x +v,t +u)dvdu 

(2.1) n x 
Z *(x +v,t +u)dvdu 

The numerator in the above expression (whose unit 
is "persons ") represents the number of individuals 
aged x to x +n who die during the base period 
[t,t +h] and is known from the death data. The 
denominator (whose unit is "person years ") 
represents the individual -time units of exposure 
to the risk of death in the same age interval 
and base period and is unknown because the inner 
integral, which is the population between the 
ages x and x +n at any time point in the base 
period, is unknown except at midyears. 

By definition, to construct a life table at 
e mid -period is to take the hazard function 
(x,t +h /2) of the observed population at this 

time point to be the hazard function u(x) for 

the stationary population of the life table. 
Consider the time variable to be fixed at the 
midpoint t +h /2 of the base period and write 

*(v,t +h /2)dv. 
n x x 

Then, (2.1), with the mid -period time point 
t +h /2 understood, can be written as 

x+n 

x n 
(v)u(v)dv = M 

x n 
P 
x 

(2.2) 

The person -year integral in the denominator 

of (2.1) can be numerically integrated and 

expressed in terms of populations at mid -years 
(Hsieh, 1976). hMt can then be calculated from 

n x 
the observed data. 

From the lifetime distribution theory or the 
pure death process we have for the lifelength X 

at midperiod, 
x+n 

n x 
E Pr{X>x+n >x}= exp{ u(v)dv}. 

(2.3) 

(2.3) expresses the survival rate npx in terms of 

the force of mortality u(x) over the corresponding 

age interval in the stationary population. 

3. CALCULATION OF THE SURVIVAL RATE 

In (2.2) both quantities on the right hand 

side are known whereas both Z *(v) and u(v) on 

the left hand side are unknown functions. This 

equation can be regarded as an integral equation 

with u(v) as the unknown function. Once u(v) is 

solved for, is obtained from (2.3). Equation 



(2.2) can be shown to be indeterminate (Hsieh, 
1977). Thus, in order to uniquely determine p(x) 
or the integral 

x +n 

p(v)dv 

from (2.2), it is necessary to impose constraints 
either on *(x) or on p(x) alone or on both l *(x) 

and p(x). 

Aside from the standard regularity properties 
imposed on Z *(x) in Section 2 for mathematical 
convenience, (x) also has its natural demog- 
raphic properties: 1*(x) > >0 for 0 <x <w, and 
Z *(w) =0, where w is the maximum age. Now, let- 
ting 

* 
(x) (v) dv 

and integrating by parts on the left hand side 
of (2.2) yields 

x +n 

Z ( v)H(v)dv = p(x)H(x) - u(x+n)H(x +n) 

x +n 

+ f p' ( v)H(v)dv, (3.1) 

where the prime signifies derivative. A Taylor 
expansion on H(v) about v = x +n /2 in linear 
terms gives 

H(v) = H(x+n/2) - Z*(x+n/2)(v-x-n/2) + E(v),(3.2) 

with error term 

E(v) = - x+n/2(v-y)Z*I 
(y)dy- 

Entering (3.2) into the last term on the right 
hand side of (3.1) and carrying out the integr- 

ation, we have 

x +n 

p' (v)H(v)dv = H(x +n /2)[p(x +n) -p(x)] 

- (n/2)Z*(x+n/2)[p(x+n)-p(x)] 

x+n x+n 
+ Z*(x+n/21xI p(v)dv + p(v)E(v)dv. 

(3.3) 

We shall now approximate the integral 
involving the error term E(v). Using the integral 

expression for the error term in (3.2) in the 

last integral of (3.3), replacing one of the two 
functions which form the product in the htegrands 
by its average value, and reversing the order of 
integration in the iterated integral gives: 

x+n x+n 
E(v)p (v)dv - (y)dy}p (v)dv 

x+n v *1 
= - (1/x+nxl x+n/2(v-y)Z* (y)dydv} 

x p(v)dv} 

x+n x+n 
= -(1/n)[x+n/2{yI (v-y)dv}Z* (y)dy + 

x 
y x+n/2* {xI(v-y)dv}Z(y)dy][p(x+n)-p(x)} 
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(n/24)[Z*(x)-Z*(x+n)][p(x+n)-p(x)]. (3.4) 

Combining (2.2),(2.3),(3.1),(3.3) and (3.4), and 
using H(x)- H(x +n). 

n 
P 
x 

, yields 

* 
lnnpx = -[1 /1 (x +n /2)][nMx 

- p(x)nPx 

+ (n /2)Z *(x +n /2) {p(x +n)+ p(x)} 

- [H(x +n /2)- H(x +n) + (n /24) {Z (x)- Z *(x +n) }] 

x {u(x+n)- p(x) (3.5) 

The approximations in (3.4) made use of the 
mathematical fact that the two functions 

x +n y 
G1(y) =yf (v -y)dv and G2(y) (v -y)dv 

do not change sign in any age interval [x,x +n), 
and the demographic fact that p (v) does not 

change sign except for one or three intervals 
where the relative minima or maximum of the p(v) 
curve occur. In these intervals, however, the 
value of 

x+n 

(v)dv = 

is near zero and therefore the approximation has 
little effect on the result. At worst, the 
approximation may be regarded as taking the error 
E(v) to be constant within each of these transition 
intervals. 

Our next task is to approximate by numerical 
methods the unknown quantities that appear in 
(3.5) in terms of mid- period populations and 
death rates. We adopt the conventional division 
of the whole agespan for the abridged life table 
into 0, 1, 5, 10, ..., 85, 90, w years, where w 
is the maximum age to which any individual can 
live. The prsent proposed method may be used to 
advantage for wider age groups. However, data 
for single -year age intervals, even when available, 
are not reliable; if they were, many simple methods 
would produce life table functions about as 
accurate as those produced by sophisticated methods 
such as the present one. 

Our life table method begins with age one and 
ends at the exact age marking the start of the 
terminal age interval (90 in this case). The 
precise method for the first year of life, because 
of gross underenumeration (and estimation) of 
infants, requires birth data and is therefore 
different from the method for ages beyond one 
(see Greville 1947). Life table functions for 
the terminal age interval, because of the unknown 
w, are conventionally computed using the fact that 

=0 and the assumption that the age distribution 
of the observed population is identical with that 
of the stationary population. 

The formula for computing n -year survival 
rate is as follows: 

Zn p = -n M - n A B / P, (3.6) 
n x n x x x n x 



where (i) for x = 1, n is 4 and 

Al = (7254P1 - 4185P5 - 1625P100.2825, 

B1 = (4754M1 + 7225M5 - 1145M10)/1083 

- (365/31)Dm/(B-D1+Dm), or 

B1 = (-11204M1 + 14445M5 - 3245M10)/855; 

(ii) for x = 5, 10, ..., 75, n is 5 and 

Ax -5 - 35Px 55Px+5 5Px +10)/192' 

Bx = (- 35Mx 
-5 - 

35Mx + 75Mx+5 
5Mx +10)/8; 

and (iii) for x = 80, 85, n is 5 and 

Ax = (5Px-10 
+ 25Px-5 - 35Px)/48, 

Bx (5Mx-10 
- 45Mx-5 + 35Mx)/2. 

Formula (3.6) is obtained by using collocation 
polynomials, 

nPx 
H(x)- H(x+n) and the approx- 

imations 
n 
P 
x 

= nZ (x+n /2) and 
n 
M 
x 

= p(x +n /2) in 

equation (3.5). For age intervals other than 
the first, the following general form of Newton's 
formulas with various chosen values of j, r and 
s, 

r(r-1)...(r-i+l) 
i 

f + 
x+(j +r)n ii x+jn t 

where f 
x 

designates the ith forward difference 

of and Et denotes the truncation error, were 

used to express the unknown functions in (3.5) 

as linear combinations of mid -period populations 
and death rates. Because unequal age intervals 
were involved, Lagrange's formulas for collocation 
polynomials were employed for the first age 
interval (x =1, n =4). Also, the abrupt bend of 
the u(x) curve around age one renders it inapprop- 
iate, except for countries with very low infant 
mortality, to extrapolate u(1) in terms of death 
rates in succeeding age intervals. Since Z(x) 
is convex at age one, µ(1) is closely estimated 
by the ratio of the conditional probability of 
dying in the 12th month of life to the length 
of the month: 

}i(1) = (365/31)Dm/[B - D1 + Dm], (3.7) 

where Dm,D1 and B, respectively, denote the 

number of deaths in the 12th month of life, the 
number of deaths under one year, and the number 
of births, all during the base period. The data 
for Dm and D1 are given for various countries 

in the 1974 U.N. Demographic Yearbook. Utiliz- 
ation of (3.7) leads to the alternative expression 
for B1 given in (3.6). 
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4. COMPARISON OF ACCURACY 

Keyfitz and Frauenthal (1975) showed that 
their life table method is more accurate than 
other ones. In this section we emphasize compa- 
risons between the new method and the Keyfitz- 
Frauenthal (denoted henceforth as "K -F ") method. 

To effect a precise comparison of accuracy, 
we use the test proposed by Keyfitz and Frauenthal 
(1975) which assumes both functions *(x) and 

Z(x) to be known, where 1(x) is the number of 
survivors to age x out of 1(0) births in the life 

table so that Z(x +n)= Z(x)npx. Adopting K -F stable 

population profile *(x) and Makeham's graduation 
formula for 1(x), 

l*(x) = 106[1-exp(x/100-1)] (4.1) 

and Zn Z(x) = Zn 1(0) + x in s + (cx -1) in g , 

(4.2) 

where s= .999859, g= .999743 and c= 1.109887; u(x), 

(x), *'(x), 
n 
M 
x n 

and P 
x 

are computed using 

(2.3) and (2.2). 

Next, the new formula (3.6) and the formulas 
for the following abridged life table methods: 

Greville: 
(1943) 

Znnpx 
= -nnMx - 

n ñ x(nMx+n nMx-n)/24, 

Reed and Merrell: 
(1939) 

Znnpx = -nnMx - .008n3 

Keyfitz and Frauenthal: 
(1975) 

=-nM 
n x n x 

+ n( P - P ) ( M - M )/(48 P ) 

n x+n n x-n n x+n n x-n n x 

(4.4) 

(4.5) 

(4.6) 

are applied to the synthetic nMx and nPx to 

reproduce the life table Z(x). Since K -F formula 

(4.6) cannot be used for computing npx for the 

initial interval [0,5), the simple formula 

Zn 
n 
p 
x n x 
= -n M obtained from (2.2) and (2.3) by 

assuming constant force of mortality within this 

age interval, is used to compute Z(5) for all life 

table methods. The results are shown in Table 1. 

The cumulative absolute errors are found to be 

4.55 for the new formula (3.6) , 41.71 for the 

K -F formula (4.6), 825.66 for the Reed and Merrell 

formula (4.5) and 996.18 for the Greville formula 

(4.4). 

The principal advantage of the new method 

over the K -F method is that the latter requires 

estimation of (x) and p (x) while the former 

requires estimation of *(x), u(x) and 

x +n 

x +n /2 
(v)dv. 

The well known fact that approximate derivatives 



Table 1. Comparison of Exact Makeham 1(x) with Results of Four 

Approximate Life Table Methods 

Age 
exact Hsieh 

(3.6) 

Keyfitz & 
Frauenthal 

(4.6) 

Reed & 

Merrell 

(4.5) 

Greville 

(4.4) 

0 100000 100000 100000 100000 100000 

5 99912 99912 99912 99912 99912 

10 99812 99812 99812 99812 99812 

15 99692 99692 99692 99692 99692 

20 99538 99538 99538 99538 99538 

25 99327 99327 99327 99328 99328 

30 99021 99021 99021 99022 99022 

35 98555 98555 98555 98556 98556 

40 97822 97822 97821 97825 97825 

45 96646 96646 96646 96652 96652 

50 94744 94744 94743 94753 94753 

55 91668 91668 91667 91684 91683 

60 86754 86754 86752 86778 86776 

65 79104 79104 79101 79134 79129 

70 67747 67747 67741 67767 67754 

75 52207 52208 52200 52176 52148 

80 33679 33681 33670 33531 33481 

85 16105 16107 16096 15828 15762 

90 4651 4651 4647 4394 4346 

Table 2. Comparison of Exact 
n 
L 
x 

Computed from Makeham Z(x) 

with Results of Four Approximate Integration Methods 

Age exact 

(5.1) 

Keyfitz & 
Frauenthal 

(8.2) 

Polynomial 

(8.3) 

Simple 
ratio 

(8.4) 

1 399792 399790 399790 399790 399860 

5 499316 499316 499316 499316 499520 

10 498770 498770 498771 498771 499079 

15 498092 498092 498093 498093 498532 

20 497193 497193 497194 497194 497776 

25 495920 495921 495923 495923 496648 

30 494023 494024 494027 494027 494882 

35 491082 491082 491089 491088 492049 

40 486402 486403 486414 486413 487441 

45 478855 478856 478873 478870 479909 

50 466638 466640 466667 466656 467615 

55 446992 446994 447038 447008 447748 

60 415995 415996 416064 415988 416316 

65 368844 368839 368942 368771 368461 

70 301562 301546 301685 301379 300247 

75 215361 215324 215488 215141 213169 

80 122917 122916 123014 122987 120469 

85 48574 48619 48613 49077 46870 

Cumulative 
absolute error 114 677 1134 16347 



Table 3. Abridged Life Table for Male Population: Canada, 1970 -72 

Age 
Group 

X- 
(1) 

n 
P 
x 

(2) 

n 
D 
x 

(3) 

n 
M 
x 

(4) 

n 
q 
x 

(5) 

t(x) 

(6) 

n 
d 
x 

(7) 

L 
x 

(8) 

T(x) 

(9) 

e(x) 

(10) 

Under 182195 11173 0.020441 0.020022 100000 2002 
98226 6933697 69.337 

1-4 747410 2119 0.000945 0.003800 97998 372 391106 6835470 69.751 

5-9 1152430 1913 0.000553 0.002843 97625 278 487398 6444365 66.011 

10-14 1181450 1837 0.000518 0.002595 97348 253 486205 5956967 61.193 

15-19 1074430 4697 0.001457 0.007292 97095 708 483891 5470762 56.344 

20-24 941775 5266 0.001864 0.009267 96387 893 479666 4986871 51.738 

25-29 800710 3556 0.001480 0.007369 95494 704 475669 4507205 47.199 

30-34 660875 3287 0.001658 0.008271 94790 784 472058 4031536 42.531 

35-39 645045 4243 0.002193 0.010911 94006 1026 467645 3559478 37.864 

40-44 640765 6886 0.003582 0.017771 92981 1652 461080 3091833 33.252 

45-49 613415 10406 0.005655 0.027980 91328 2555 450757 2630753 28.805 

50-54 518895 14562 0.009354 0.045945 88773 4079 434378 2179996 24.557 

55-59 472415 20730 0.014627 0.070894 84694 6004 409427 1745617 20.611 

60-64 381690 26571 0.023205 0.110425 78690 8689 372915 1336191 16.980 

65-69 296050 31482 0.035447 0.163899 70001 11473 322435 963276 13.761 

70-74 205575 32751 0.053105 0.235759 58528 13798 258880 640840 10.949 

75-79 139995 33145 0.078919 0.330026 44729 14762 186786 381961 8.539 

80-84 85680 30650 0.119242 0.456339 29967 13675 114579 195175 6.513 

85-89 40625 21181 0.173793 0.592992 16292 9661 55166 80595 4.947 

90+ 13940 10905 0.260760 1.000000 6631 6631 25430 25430 3.835 



obtained from collocation polynomials conglomerate 
much larger errors than do approximations of 
functions and their integrals is reflected in the 
ample difference (41.71 versus 4.55) in the 
cumulative absolute error between the two life 
table methods based on the results of Table 1. 
With the transition from synthetic to real data, 
the K -F method would suffer still greater loss 
in accuracy than the new method. This is because 
the analytic curve used in the test may be close 
to the true curve and yet the two curves still 
may have very different slopes. Thus, for age 
distributions with dents and bulges such as those 
resulting from the two World Wars, the estimated 
values of Z (x) in age intervals adjacent to 
where the dents and bulges occur4could differ 
vastly from the true values of Z (x). 

Another advantage of the present method over 
the K -F method regards coverage of the agespan. 
Since the K -F method requires three consecutive 
age intervals of equal length to calculate the 
survival rate for the central age interval, the 

K -F formula (4.6) cannot be used to compute 
survival rates for both the first age interval, 
either [0,5) or [1,5), and the last age interval 
[85,90). On the other hand, with no problem of 
estimation of slopes, the new formula (3.6) covers 
these two intervals just as well as other age 
intervals. 

5. COMPUTATION OF STATIONARY POPULATION 

With values of the survivorship function Z(x) 
available at the age points x =1, 5, 10, ..., 90, 

we now turn to the problem of computing stationary 
populations 

n 
nLx Z(x+v)dv. 

Various methods of approximating this integral 
exist in the literature with varying degrees of 
accuracy (see Table 2). We use the method of 
splines to approximate the integral 

L. 
i 

Lx, i= 0,1,...,k, 

by the formula: 

Li )/2 
+ 

+1 
(5.1) 

where a and the slopes {si} are to be 

determined by solving the following system of 
k -1 equations for cubic splines: 

ni 
+1si -1 

+ 2(ni +1 +ni)si + nisi +l 

= 3[ ni+1(Zi+l 
- + 

for i= 1,2,...,k -1, 

(5.2) 

with the two boundary conditions: 
(1) the first endslope 

so = Zß(1) = -(365 /31)Z(1)Dm /[B- (5.3a) 

(2) the last endslope 
3/2 -1/2 

sk = = -1(90)(5M85) 
(5M80) 

(5.3b) 
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The above boundary conditions define a complete 
cubic spline and are obtained on the basis of 
properties of life table functions. For further 

details see Hsieh (1977). 

In Table 2 we compare four methods of 

computing approximate values of L., using the 

same set of data {xi, Zi} taken from Makeham 

curve (4.2). The exact values of Li are obtained 

by integrating Z(x) in (4.2) from xi to xi 

The other three methods are: 

Keyfitz and Frauenthal: 

n(Zi-Zi+1) 

Li - li+l[1+n(Mi+l-Mi-1)/24] 
(5.4) 

Polynomial (cubic): 

(13/24)ni(Zi+1+Zi) - 

(5.5) 

Simple ratio: 

L. (Z.-Z. 
1+1 ) /Mi. 

The age specific death rates 

M.= M 
ni xi 

(5.6) 

in (5.4) and (5.6) are computed from (2.2) using 

(4.1) and (4.2). 

The results obtained from (5.1) generate a 
cumulative absolute error of 114, as compared 
with 677, 1134 and 16347 for formulas (5.4),(5.5) 

and (5.6) respectively. 

To illustrate the present proposed method, 
formulas (3.6) and (5.1) are used to construct an 
abridged life table for the 1970 -72 Canadian male 

population as shown in Table 3. 
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